Finding the Maximum Subset with Bounded Convex Curvature

نویسندگان

  • Mikkel Abrahamsen
  • Mikkel Thorup
چکیده

We describe an algorithm for solving an important geometric problem arising in computer-aided manufacturing. When machining a pocket in a solid piece of material such as steel using a rough tool in a milling machine, sharp convex corners of the pocket cannot be done properly, but have to be left for finer tools that are more expensive to use. We want to determine a tool path that maximizes the use of the rough tool. Mathematically, this boils down to the following problem. Given a simply-connected set of points P in the plane such that the boundary ∂P is a curvilinear polygon consisting of n line segments and circular arcs of arbitrary radii, compute the maximum subset Q ⊆ P consisting of simply-connected sets where the boundary of each set is a curve with bounded convex curvature. A closed curve has bounded convex curvature if, when traversed in counterclockwise direction, it turns to the left with curvature at most 1. There is no bound on the curvature where it turns to the right. The difference in the requirement to leftand rightcurvature is a natural consequence of different conditions when machining convex and concave areas of the pocket. We devise an algorithm to compute the unique maximum such set Q. The algorithm runs in O(n logn) time and uses O(n) space. For the correctness of our algorithm, we prove a new generalization of the Pestov-Ionin Theorem. This is needed to show that the output Q of our algorithm is indeed maximum in the sense that if Q′ is any subset of P with a boundary of bounded convex curvature, then Q′ ⊆ Q. 1998 ACM Subject Classification I.3.5 Computational Geometry and Object Modeling

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fixed points for total asymptotically nonexpansive mappings in a new version of bead ‎space‎

The notion of a bead metric space is defined as a nice generalization of the uniformly convex normed space such as $CAT(0)$ space, where the curvature is bounded from above by zero. In fact, the bead spaces themselves can be considered in particular as natural extensions of convex sets in uniformly convex spaces and normed bead spaces are identical with uniformly convex spaces. In this paper, w...

متن کامل

Existence Results of best Proximity Pairs for a Certain Class of Noncyclic Mappings in Nonreflexive Banach Spaces Polynomials 

Introduction Let  be a nonempty subset of a normed linear space . A self-mapping  is said to be nonexpansive provided that  for all . In 1965, Browder showed that every nonexpansive self-mapping defined on a nonempty, bounded, closed and convex subset of a uniformly convex Banach space , has a fixed point. In the same year, Kirk generalized this existence result by using a geometric notion of ...

متن کامل

Functionally closed sets and functionally convex sets in real Banach spaces

‎Let $X$ be a real normed  space, then  $C(subseteq X)$  is  functionally  convex  (briefly, $F$-convex), if  $T(C)subseteq Bbb R $ is  convex for all bounded linear transformations $Tin B(X,R)$; and $K(subseteq X)$  is  functionally   closed (briefly, $F$-closed), if  $T(K)subseteq Bbb R $ is  closed  for all bounded linear transformations $Tin B(X,R)$. We improve the    Krein-Milman theorem  ...

متن کامل

Convex tours of bounded curvature

We consider the motion planning problem for a point constrained to move along a smooth closed convex path of bounded curvature. The workspace of the moving point is bounded by a convex polygon with m vertices, containing an obstacle in a form of a simple polygon with n vertices. We present an O(m + n) time algorithm finding the path, going around the obstacle, whose curvature is the smallest po...

متن کامل

On fixed points of fundamentally nonexpansive mappings in Banach spaces

We first obtain some properties of a fundamentally nonexpansive self-mapping on a nonempty subset of a Banach space and next show that if the Banach space is having the Opial condition, then the fixed points set of such a mapping with the convex range is nonempty. In particular, we establish that if the Banach space is uniformly convex, and the range of such a mapping is bounded, closed and con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016